315 research outputs found

    Potential merits for space robotics from novel concepts of actuation for soft robotics

    Get PDF
    Autonomous robots in dynamic and unstructured environments require high performance, energy efficient and reliable actuators. In this paper we give an overview of the first results of two lines of research regarding the novel actuation principle we introduced: Series-Parallel Elastic Actuation (SPEA). Firstly, we introduce the SPEA concept and present first prototypes and results. Secondly, we discuss the potential of self-healing materials in robotics, and discuss the results on the first self-healing pneumatic cell and selfhealing mechanical fuse. Both concepts have the potential to improve performance, energy efficiency and reliability

    The sensor-based biomechanical risk assessment at the base of the need for revising of standards for human ergonomics

    Get PDF
    Due to the epochal changes introduced by “Industry 4.0”, it is getting harder to apply the varying approaches for biomechanical risk assessment of manual handling tasks used to prevent work-related musculoskeletal disorders (WMDs) considered within the International Standards for ergonomics. In fact, the innovative human–robot collaboration (HRC) systems are widening the number of work motor tasks that cannot be assessed. On the other hand, new sensor-based tools for biomechanical risk assessment could be used for both quantitative “direct instrumental evaluations” and “rating of standard methods”, allowing certain improvements over traditional methods. In this light, this Letter aims at detecting the need for revising the standards for human ergonomics and biomechanical risk assessment by analyzing the WMDs prevalence and incidence; additionally, the strengths and weaknesses of traditional methods listed within the International Standards for manual handling activities and the next challenges needed for their revision are considered. As a representative example, the discussion is referred to the lifting of heavy loads where the revision should include the use of sensor-based tools for biomechanical risk assessment during lifting performed with the use of exoskeletons, by more than one person (team lifting) and when the traditional methods cannot be applied. The wearability of sensing and feedback sensors in addition to human augmentation technologies allows for increasing workers’ awareness about possible risks and enhance the effectiveness and safety during the execution of in many manual handling activities

    Markerless Vision-Based Skeleton Tracking in Therapy of Gross Motor Skill Disorders in Children

    Get PDF
    This chapter presents a research towards implementation of a computer vision system for markerless skeleton tracking in therapy of gross motor skill disorders in children suffering from mild cognitive impairment. The proposed system is based on a low-cost 3D sensor and a skeleton tracking software. The envisioned architecture is scalable in the sense that the system may be used as a stand-alone assistive tool for tracking the effects of therapy or it may be integrated with an advanced autonomous conversational agent to maintain the spatial attention of the child and to increase her motivation to undergo a long-term therapy

    Miniature Pneumatic Curling Rubber Actuator Generating Bidirectional Motion with One Air-Supply Tube

    Get PDF
    Soft actuators driven by pneumatic pressure are promising actuators for mechanical systems in medical, biological, agriculture, welfare fields and so on, because they can ensure high safety for fragile objects from their low mechanical impedance. In this study, a new rubber pneumatic actuator made from silicone rubber was developed. Composed of one chamber and one air-supply tube, it can generate curling motion in two directions by using positive and negative pneumatic pressure. The rubber actuator, for generating bidirectional motion, was designed to achieve an efficient shape by nonlinear finite element method analysis, and was fabricated by a molding and rubber bonding process using excimer light. The fabricated actuator was able to generate curling motion in two directions successfully. The displacement and force characteristics of the actuator were measured by using a motion capture system and a load cell. As an example application of the actuator, a robotic soft hand with three actuators was constructed and its effectiveness was confirmed by experiments

    A personalized and platform-independent behavior control system for social robots in therapy: Development and applications

    Get PDF
    Social robots have been proven beneficial in different types of healthcare interventions. An ongoing trend is to develop (semi-)autonomous socially assistive robotic systems in healthcare context to improve the level of autonomy and reduce human workload. This paper presents a behavior control system for social robots in therapies with a focus on personalization and platform-independence. This system architecture provides the robot an ability to behave as a personable character, which behaviors are adapted to user profiles and responses during the human-robot interaction. Robot behaviors are designed at abstract levels and can be transferred to different social robot platforms. We adopt the component-based software engineering approach to implement our proposed architecture to allow for the replaceability and reusability of the developed components. We introduce three different experimental scenarios to validate the usability of our system. Results show that the system is potentially applicable to different therapies and social robots. With the component-based approach, the system can serve as a basic framework for researchers to customize and expand the system for their targeted healthcare applications

    Mapping Robots to Therapy and Educational Objectives for Children with Autism Spectrum Disorder

    Get PDF
    The aim of this study was to increase knowledge on therapy and educational objectives professionals work on with children with autism spectrum disorder (ASD) and to identify corresponding state of the art robots. Focus group sessions (n = 9) with ASD professionals (n = 53) from nine organisations were carried out to create an objectives overview, followed by a systematic literature study to identify state of the art robots matching these objectives. Professionals identified many ASD objectives (n = 74) in 9 different domains. State of the art robots addressed 24 of these objectives in 8 domains. Robots can potentially be applied to a large scope of objectives for children with ASD. This objectives overview functions as a base to guide development of robot interventions for these children
    • …
    corecore